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Abstract

Ecological thresholds comprise relatively fast changes in ecological condi-
tions, with respect to time or external drivers, and are an attractive concept
in both scientific and policy arenas. However, there is considerable debate
concerning the existence, underlying mechanisms, and generalizability of
ecological thresholds across a range of ecological subdisciplines. Here, we
use the general concept of scale as a unifying framework with which to
systematically navigate the variability within ecological threshold research.
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We review the literature to show how the observational scale adopted in any one study, defined
by its organizational level, spatiotemporal grain and extent, and analytical method, can influence
threshold detection and magnitude.We highlight a need for nuance in synthetic studies of thresh-
olds,which could improve our predictive understanding of thresholds.Nuance is also neededwhen
translating threshold concepts into policies, including threshold contingencies and uncertainties.
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Threshold: points or
zones at which
relatively rapid change
occurs from one
ecological condition or
state to another, often
in response to small,
continuous changes in
one or more external
drivers

Drivers: external
factors that influence
the dynamics of a
system without
themselves being
affected

INTRODUCTION
More than 20% of the terrestrial surface will cross one or several. . .thresholds by 2100, which calls for
immediate actions to minimize the negative impacts. . .on essential ecosystem services.

—Miguel Berdugo et al. (1, p. 787)

Global change biology needs to abandon the general expectation that system properties allow defining
thresholds as a way to manage nature under global change.

—Helmut Hillebrand et al. (2, p. 1502)

The Anthropocene is characterized by substantial changes to Earth’s systems brought about by
the actions of humans over the past hundreds to thousands of years (3, 4). Although the impacts
of humans on ecological patterns and processes are undeniable and sometimes dramatic, there is
still an urgent need to quantify and understand these changes in order to forecast future changes,
as well as identify avenues for sustainable use of the Earth’s resources for generations to come
(5, 6). There is a particular need to establish whether rates of change are relatively smooth and
linear across space or time, or whether ecological thresholds are common. That is, are there tran-
sition points or zones of relatively rapid change between ecological conditions or ecosystem states,
with respect to time or external drivers?

Ecological thresholds, if they exist and are common, have important implications for our basic
understanding and predictions of ecosystem dynamics, as well as for developing policies that
mitigate change or restore degraded ecosystems. At local scales, ecological thresholds have been
implicated in, among other things, the decline (and slow recovery) of water quality, fisheries stocks,
and the associated ecosystem services of freshwater (7) andmarine (8) systems. Similarly, threshold
responses have been observed in terrestrial ecosystems, for example where interdependent actions
of fire, drought, and invasive species drive shifts between open (grass-dominated) and more closed
(shrub- and tree-dominated) communities, with changes in the associated ecosystem services (1,
9). In each of these cases, scientists have used multiple lines of evidence to suggest the existence
and location of ecological thresholds, and have collaborated with policymakers to develop policy
and adaptive management to minimize the possibility of crossing such thresholds (10–12).

At global scales, the concepts of planetary boundaries and safe operating space explicitly as-
sume that there are thresholds in biodiversity loss and other ecosystem functions beyond which
the Earth system might collapse to a difficult—or impossible-to-recover-from—alternative state
(13, 14). Thresholds concepts are also built directly into reports on the state of the planet’s ecosys-
tems, such as the report from the Intergovernmental Science-Policy Platform on Biodiversity and
Ecosystem Services (IPBES) (5), and are used as tools in conservation and restoration policies (10,
15, 16).

Despite great interest in ecological thresholds from a scientific and policy perspective, we are
still a long way from understanding their prevalence and predictability in the real world. There is
no question that there are many important examples of threshold-like responses in nature. At the
same time, some of this evidence has generated lively debate among scientists (reviewed in 12).
Much of the controversy surrounding thresholds concerns their actual existence in nature (2) and,
where they do exist, their underlyingmechanisms and quantitative values. Any proposed threshold
values are often contentious (17) and of questionable utility due to the context-dependent nature of
their quantification, contingent on a host ofmethodological decisions, as well as the environmental
context of a study (18, 19). For example, a study that compiled long-term trends in 12 coastal and
estuarine ecosystems to demonstrate the frequency of fishery collapses over time (20) was met
with great criticism given the methods and data used, and the extrapolation of regression results
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Critical load: a level
of pollution beyond
which ecosystem
states, properties, or
functions are altered

to project the global collapse of all fished taxa by 2048 (21, 22). Similarly, a review of landscape
ecology studies suggested that forest cover needs to be restored or maintained on at least 40% of
land area in order to maintain biodiversity and the ecosystem services (23). This generic figure
has been criticized, because 40% is likely not enough in some areas and too high in others, and
because the size of the landscape to which this figure is applied is not easily defined (17). Indeed,
a recent meta-analysis suggested that thresholds were likely to be rare in most ecosystems that
using them in the policy arena could do more harm than good (2).

Understanding the contentious field surrounding ecological thresholds requires a deep dive
across diverse scales of study, from single lakes (24) to entire continents (25), as well as across
varying timescales from millennia (26) to more recent observations of global change within the
Anthropocene (2). This review attempts to assemble and organize the ways that thresholds are
context dependent using scale as a unifying framework.We first overview the different qualitative
forms (typologies) of ecological thresholds. Next, we present a short review of evidence for eco-
logical thresholds associated with important anthropogenic drivers and highlight how thresholds
are used in a diversity of environmental policies. We describe ways in which empirical evidence
has been used to test for ecological thresholds and then review how various forms of ecological
scale, especially observational scale, can strongly influence our ability to detect and quantify them.
We then illustrate scale dependencies using a simple simulation model and several empirical case
studies. Finally, we conclude with a discussion about how threshold science can be used to inform
policies aimed at mitigating threshold transitions and ecosystem restoration, and the challenges
and opportunities that synthesis provides.

Although research on ecological thresholds is broad, spanning ecological, social, and economic
disciplines (27), we narrow our scope to the following: (a) ecological response variables, i.e., the
population-community continuum of ecological variables; (b) anthropogenic drivers rather than
intrinsic factors and natural pulse drivers, i.e., external drivers brought about by human activities
(e.g., climate change, harvesting, habitat loss); and (c) empirical patterns. Our review primarily
concerns empirical approaches to detecting thresholds in nature, rather than on theoretical explo-
rations of their mechanistic underpinnings (see, e.g., 28 for a useful introduction to this material).
Finally, a note on terminology: Here, we use the term thresholds to refer to nonlinear ecological
responses to drivers. We note that a diversity of terms are used in the literature (for reviews, see
9, 12, 19, 28). These include tipping points (e.g., 29), critical transitions (30), regime shifts (e.g.,
31), planetary boundaries and safe operating limits (e.g., 13, 32), ecosystem collapse (12), critical
loads (e.g., 33), and ecological meltdown (34).

THRESHOLD RESPONSES TO FIVE KEY ANTHROPOGENIC DRIVERS

IPBES recognizes five categories of drivers that influence biodiversity and ecosystem processes: di-
rect harvesting of organisms, land-/sea-use change, pollution, invasive species, and climate change
(5). Threshold responses to all of these drivers have been documented (12, 19, 24, 31). Because
of their intuitive appeal, policies designed to mitigate against the adverse impacts of these drivers
often invoke thresholds, although the actual link to observed or observable ecological thresholds
varies substantially (35). For example, threshold values might be used to prioritize ecosystems on
the brink of a threshold for restoration or to define safe limits to ecosystem degradation (18, 36).
However, policy thresholds may not relate to ecological thresholds but rather societal decisions
or regulatory limits where a given risk of system change is deemed acceptable [e.g., limits to ni-
trate levels in drinking water (24)]. In this section, we review the application of threshold concepts
in policies designed to mitigate against adverse impacts of the five global environmental change
drivers.
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Harvesting

Overexploitation occurs when populations are harvested at a faster rate than their natural recovery.
Populations can collapse following reductions below critical population size thresholds, at which
individual fitness declines, for example, due to Allee effects at low numbers (37), or through the
selective removal of larger, faster-growing individuals (38). The collapse of the Atlantic northwest
cod fishery in Canada represents the greatest decline in fish stocks in one of the world’s most
abundant cod stocks: In the early 1960s, cod numbered almost two billion breeding individuals
but declined by 97% within a few decades (38). Overharvesting can scale up from populations to
entire ecosystems via trophic cascades. For example, overfishing of predatory cod led to changes in
nitrate concentrations through an indirect impact on phytoplankton (39). To prevent population
and ecosystem collapses, regional catch quotas or fishing mortality rates that lead to maximum
sustainable yield have been proposed. Although limits to harvesting have enabled populations to
recover, apparently abundant stable marine populations are still vulnerable to collapse following
small declines in intrinsic growth rates, emphasizing the need to base harvest limits on intrinsic
population parameters (40). Recent advances in ecosystem-level food-web modeling enable the
incorporation of trophic interactions and other direct and indirect anthropogenic drivers (41).

Land-Use Change

Land-use changes, such as agricultural expansion and urbanization, lead to the loss and fragmen-
tation of habitats (42). A large body of research has sought to identify extinction and biodiversity
thresholds—critical values of habitat loss below which populations cannot persist due to reduc-
tions in resources or connectivity between original habitat patches (42). These concepts have
sparked much debate on minimum amounts and ideal arrangements of protected areas (43) and
the importance of land sparing versus land sharing (44, 45). Still, implementing thresholds into
these decision-making frameworks is difficult because it depends on historical land use (46), de-
velopment types and intensities (47), landscape composition (48), and other contextual variables
that are difficult to quantify or disentangle.

Pollution

Pollutants include chemicals from industrial emissions, agricultural runoff and inadequate waste
management, as well as energy, such as that in the form of noise, light at night, and heat. As rel-
atively discrete systems, lakes have been widely used by experimental and theoretical ecologists
to study threshold responses to the introduction of pollutants. Cumulative inputs of nitrogen and
phosphorus can lead to phytoplankton blooms that turn lakes from clear to turbid states (7). Simi-
larly, catastrophic losses in seagrass meadows have been documented worldwide in coastal lagoons
and estuaries with low tidal flushing due to the smothering effects of phytoplankton that are en-
hanced by nutrient loading from land (49, 50). Policies that mitigate against pollution include the
delimitation of critical loads beyond which ecosystem states, properties, or functions are altered
(51). Critical loads can be estimated empirically, through experimentation, the use of long-term
monitoring data, spatial deposition gradients to construct dose-response relationships (52), or by
using mass-balance or steady-state modeling (53). Concerns about their use in policy stem from
contingency in ecological responses to deposition (15, 54, 55).

Biological Invasions

Biological invasions impact biodiversity and ecosystem functioning across terrestrial and aquatic
ecosystems (56). By altering abiotic conditions and restructuring native communities, invasive
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species can drive significant changes in the abundance of key taxa and conditions that govern
the balance of alternative equilibria (57). There is interest in exploiting threshold-like responses
of invaders to management interventions. For example, the introduction of predatory biocontrol
agents, or the use of sterile male release strategies, can induce Allee effects in invader populations
under certain conditions (58), and fire and other natural disturbances can influence the success of
natives relative to invaders in systems with alternative states (59).

Anthropogenic Climate Change

Considered a meta-threat due to its ability to interact with other anthropogenic drivers (12), cli-
mate change can profoundly affect populations (e.g., demography), species (e.g., distributions,
phenology), and communities [e.g., relative abundances, biotic interactions, food-web structure
(e.g., 60)]. Prominent examples of threshold responses to climate change include mass coral
bleaching events, triggered by strong environmental perturbations (e.g.,marine heatwaves), which
cause corals to eject their algal symbionts and reduce to white skeletons (61). The discrepancy be-
tween the spatiotemporal scales at which climate policies are based and those at which ecological
thresholds are observed is a major obstacle for the conservation of biodiversity in the face of
climate change (62).

TYPOLOGY OF ECOLOGICAL THRESHOLD RESPONSES
TO ENVIRONMENTAL CHANGE

An ecosystem’s external conditions often change gradually with time, for example via nutrient
addition and habitat fragmentation (24). Several qualitatively distinct ecological responses to such
changes are possible (Figure 1). Here, we briefly describe four broad types of responses that can
occur (see, e.g., 9, 28 and 12 for comprehensive reviews). Although ecosystems experience, and
respond to, changes over time, studies can exploit environmental gradients across space, thus the
x-axes in Figure 1 can represent gradients in space or time.

Changes in external conditions in time or space can lead to relatively smooth, linear changes in
the ecological response of interest (Figure 1a). Often, however, gradual changes in the environ-
ment can lead to nonlinear responses, including threshold, unimodal, and more complex patterns
(Figure 1b–d). In these examples, ecological thresholds are points or zones at which relatively

Ec
os

ys
te

m
 s

ta
te

Driver

a  Linear c  Unimodalb  Thresholds without hysteresis d  Thresholds with hysteresis

Figure 1

Different responses of ecosystem state (measured as, e.g., biomass, species diversity) to changes in external conditions—drivers (e.g.,
nutrient loads, land-use intensity): (a) linear, (b) thresholds without hysteresis, (c) unimodal, (d) thresholds with hysteresis. Adapted from
Reference 9.
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Abrupt change:
change in the mean or
variability of a
biodiversity variable
that is fast in time or
fast relative to their
drivers

rapid change occurs from one ecological condition or state to another, often in response to small,
continuous changes in one or more external drivers (9).

Ecological parameters may be relatively unresponsive to drivers until conditions reach a crit-
ical value (Figure 1b). This type is often observed, or expected to occur, in response to a range
of drivers such as land-use change, where decreases in habitat amount can reach an extinction
threshold, beyond which local extirpation probability can rapidly change from near-zero to near-
one (63). Similarly, increases in pollution beyond a critical load can yield threshold responses of
individuals, populations, and communities in both terrestrial (52) and aquatic (16) ecosystems.

Unimodal relationships are threshold-like across the range of a driver (Figure 1c). Tempera-
ture is a classic example, where individual-level performance (fitness) and population size increase
with temperature until an optima is reached, after which declines occur (64). As global tempera-
tures increase, community composition may change through the loss of species now outside their
climate niche and the gain of other species whose niche better matches the new climate (65).Other
examples of hump-shaped responses (not without debate) include responses of plankton diversity
to eutrophication in lakes and ponds (66), responses of bird diversity to urbanization (67), and
studies showing highest diversity at intermediate levels of (anthropogenic) disturbance (68).

In accordance with dynamical systems theory, a third, more dramatic, nonlinear response is
possible (Figure 1d). In such cases, ecosystems can exist in two (or more) alternative stable states,
which are separated by an unstable equilibrium between basins of attraction (24, 28). Once an in-
flection point is traversed, hysteresis occurs, and ecosystems cannot be easily returned to the initial
state by simply returning ecosystem conditions to the level before which the transition occurred
(69). Sometimes these states are transient rather than equilibrial but can be maintained for a long
period (70). Real-world examples include transitions between forests and savannah (71), coral and
algal dominance in coral reefs (72), clear water and phytoplankton-dominated shallow lakes (7),
and biocrusts and vegetation in drylands (73). Although alternative states are driven by positive
feedback mechanisms (intrinsic processes such as negative density dependence), abrupt changes
can also be caused by rapid, rather than gradual, changes in the external conditions (sometimes
referred to as pulse, rather than press, disturbances), or from interactions among drivers without
a positive feedback mechanism (12).

Although not shown in Figure 1,more complex responses are also possible. For example, there
are numerous examples where a threshold in one part of a complex ecological system can cascade
to influence threshold responses in other parts of the system (74).

DIVERSITY OF STATISTICAL MODELING APPROACHES
FOR DETECTING ECOLOGICAL THRESHOLDS

Many statistical modeling approaches can be used to detect and quantify thresholds and, more
generally, to characterize nonlinearity between environmental and biodiversity response variables.
Approaches range from computationally and data-intensive analyses (75) to simple post hoc de-
cisions about threshold locations in regression outputs (e.g., value of an independent variable at
a particular value of the dependent variable) (76). Different modeling approaches often concern
differences in the type of threshold expected (Figure 1), especially whether the assumption is a
sharp or gradual change and whether the transition is reversible.

Abrupt change in the slope of a relationship is also called structural change, and the locations of
change are commonly called change or break points.One of the simplest tests for abrupt change is
the generalized fluctuation test (77); however, piecewise or segmented regression that fits multiple
parametric slopes for different regions of a relationship is more commonly used in ecology (78)
(Figure 2). Piecewise regression is a special case of bent-cable regression models, which allow
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Figure 2

The fit of different modeling approaches to simulated data with a threshold response. (a) The best performing models (with lowest
AICc) under a range of sample sizes and sampling errors (standard deviation of y around the mean). Each parameter combination was
simulated 100 times and the mode of the best performing model for each combination is shown. Even though the true underlying
relationship contained an abrupt threshold, the segmented model was only the best model when sampling error was low. For most of
the parameter space, a smooth GAM model was the best model. (b) The black line shows the true deterministic relationship between x
and y, with a threshold change of y at x = 0. Black points show observations that are sampled and deviate from the deterministic
relationship due to additional variation in y around the mean (assumed to be normally distributed error). The colored lines show
predictions of different models (lm, GAM, seg) fit to the observations. Abbreviations: AICc, sample-size adjusted Akaike’s information
criterion; GAM, generalized additive model; lm, linear regression; seg, segmented.

different kinds of transitions between different structural parts of a relationship, thereby allowing
a sharp change or gradual change in the transition zone (79). Characterizing uncertainty in change
point locations and/or the width of transition zones is an active area of research that has important
implications for detecting ecological thresholds and using them in policy and practice (79).

Generalized additive models (GAMs) are increasingly used in ecology, including in thresh-
old research, since they model nonlinear relationships in a flexible way (80) (Figure 2). Ficetola
& Denoël (76) found that 27% of reviewed papers used GAMs to investigate species’ habitat
extinction thresholds. A GAM’s effective degrees of freedom determines the “wiggliness” or non-
linearity of the modeled relationship; however, there is no standard approach to test for an abrupt
transition characteristic of a threshold. Analysis of the derivatives of the fitted relationship can
identify regions of rapid change, as well as inflection points, when the second derivative of the
fitted relationship changes sign (80).

Clustering or partitioning techniques do not directly model nonlinearity, but rather split a
dataset into groups, where the locations of the splits can be interpreted as thresholds. Similarly,
tests for multimodality of a biodiversity response variable, for example, using Hartigan’s dip test
statistic, have been used to provide support for threshold responses (2). Cluster analysis has been
applied to time series, including paleoecological, in which chronological clustering defines time
periods of similar states and time points of transitions (81). Regression trees split a dataset using
recursive partitioning and can identify thresholds from multiple environmental pressures acting
on an ecological response at the same time. Other studies have used regression trees to define
thresholds of nutrient concentrations for freshwater pollution monitoring (82). Threshold Indi-
cator Taxa ANalysis is another technique most commonly used in freshwater studies (53), which
combines regression trees with indicator taxa analysis.
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Early-warning
signals: system
metrics that indicate a
system is approaching
an abrupt change or a
critical transition

Organizational level:
level of biological
organization that
ranges from
individuals,
population,
communities, and
ecosystems to biomes

Intrinsic scale:
the scale at which an
ecological pattern or
process truly operates

Grain: sampling size
of the individual units
of observation, e.g., a
quadrat (spatial grain)
or sample duration
(temporal grain)

Extent: total area
sampled of a study
(spatial extent) or total
time window of
observations (temporal
extent)

Empirically testing for more complex thresholds, such as hysteresis, is more complicated than
simply testing for nonlinearity. One indicator of hysteresis that has been examined by ecologists
is state- or time-dependent driver-response relationships, for instance, if the relationship differs
before and after a state change (81, 83, 84). Su et al. (81) used a 65-year lake ecosystem dataset
to show how relationships between environmental stressors and taxa responses were different
following an abrupt change in the mid-1980s, consistent with hysteresis. The predictive promise
of early-warning signals that occur prior to abrupt change has led to a range of possible metrics
being proposed (84). These early-warning signals include increasing variance, autocorrelation or
skewness of a biodiversity response, as well as slower recovery of a system to its original state
following disturbance (84, 85). Rarely do ecologists have sufficient data to make these metrics
useful in practice (86); however, this is still an active area of research (81, 84).

SCALE AS A UNIFYING FRAMEWORK FOR NAVIGATING CONTEXT
DEPENDENCE IN ECOLOGICAL THRESHOLDS

The problem of pattern and scale is the central problem in ecology, unifying population biology and
ecosystem science and marrying basic and applied ecology.

—Simon A. Levin (87, p. 1943)

The scale dependence of ecological patterns, processes, and their relationships has been a central
theme in ecology for decades (87–89). Although conceived as a problem (87), scale also lends
itself as a unifying framework with which to navigate apparent context dependencies, including in
ecological thresholds. A range of conceptualizations of scale have been proposed, collated by Wu
& Li (90) into a framework (Figure 3) describing aspects of scale along three dimensions: space,
time, and organizational level (Figure 3a).

Within each dimension, three fundamental scales can be operationalized: intrinsic, observa-
tional, and policy scales (Figure 3b). The intrinsic scale concerns the spatial and temporal scales
at which organisms respond to changes in their environment. In space, such scales are determined
by life-history characteristics such as body size, mobility, and dispersal distances (91). The timing
of responses to environmental change might depend on an organism’s generation time, dispersal
and colonization ability, and dormancy periods. Our ability to detect ecological thresholds will
depend on the degree of alignment between the scales intrinsic to the phenomenon under study
and the observational scale used to sample ecological phenomena and construct analytical mod-
els. Often, the appropriate scales of observation for measuring ecological responses are unknown
a priori, necessitating multiscale analysis (92).

We distinguish four components of observational scale, which correspond to decisions that re-
searchers eithermake or are restricted to, given logistical or computational constraints (Figure 3c).
These are (a) organizational level, the metric used to represent ecological change (i.e., the num-
ber of species or the biomass in a system); (b) study grain, describing the resolution of individual
observation units in space and time (and also the intervals between them); (c) study extent, its total
areal size, and its duration; and (d) analytical scale, concerning how models are fitted to data. We
acknowledge that any separation of scale components is a human construct and that components
are not independent of one another.

OBSERVATIONAL SCALES

Organizational Level

The choice of organizational level can explain some context dependencies in threshold research.
Here, organizational level concerns the selected response variable used to quantify threshold
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Figure 3 (Figure appears on preceding page)

Scale as a unifying framework to explain the context dependence of ecological patterns and processes. (a) Threshold research takes
place in three dimensions: time, space, and organization. (b) Within each dimension, our ability to detect ecological thresholds will
depend on the degree of alignment between the scales intrinsic to the phenomenon under study and the scale imposed by the observer,
that is, the observational scale used to sample ecological phenomena and construct analytical models. The scales at which inferences are
drawn are then transferred to policy scales to affect ecological processes. (c) Observation scales concern the organizational level, grain,
extent, and analytical scales imposed by the researcher. Adapted from Wu & Li (90).

responses, and ranges from individuals to populations of species to communities and ecosystems
(Figure 3a). Because thresholds may be apparent in some metrics and not others, it is generally
recommended that multiple metrics be analyzed (9, 19).

At the species level, the vast majority of taxa are rare and have highly variable occurrence
probabilities across samples, making it challenging to discern threshold responses to environmen-
tal gradients (93). Species that are relatively common have been used to estimate habitat amount
thresholds below which occurrence is unlikely. In general, we can expect generalist species to show
weaker threshold responses to the amounts of specific habitat types than specialists (94) but more
broadly for species’ characteristics to influence threshold responses (95).

At the community level, aggregate measures capture changes in summary properties, such as
total abundance, biomass, and species richness, and are considered less sensitive to environmen-
tal change, and thus thresholds, than compositional measures, such as turnover and species-level
abundances (46). This is because, for example, differences in species’ responses to change (e.g.,
niche differentiation) can compensate or buffer against changes in aggregate, community-level
metrics (Figure 3c). Hence, abrupt changes in aggregate metrics can depend on the degree of
interspecific variation in species’ response and are more likely observed if the species have similar
responses (96).

Study Grain

Grain size defines the size of individual sampling units used to measure both response variables
(e.g., plot size to measure abundance or diversity) and predictor variables (size of the landscape
unit within which drivers are measured). In time, grain concerns the duration of observations
to yield an individual sample. In many cases, the grain might be determined by the availability
of biodiversity and environmental data, or computing resources. A range of mechanisms are re-
sponsible for grain dependence of ecological patterns and processes but generally arise because
different grains yield different degrees of alignment between sampling and intrinsic (or character-
istic) scales of the ecological process.Most studies only test the effect of predictors at one or a few
discrete grain sizes; however, new methods are being developed to characterize species responses
over a more continuous range of possible grain sizes (92), which may help to more accurately
determine threshold values.

The importance of temporal grain is well-established in paleoecological studies that seek to
identify the historical timing of abrupt ecological change via the reconstruction of past ecological
communities. Such time series are vulnerable to unequal sampling intervals, due to compaction
and changes in sedimentation rates over time (97). Using subsampling of simulated and real
datasets, numerous studies have shown that increases in temporal grain size and interval can
diminish both the autocorrelation and variance signals that indicate early-warning signals of flick-
ering and critical slowing down, and the apparent timing of abrupt change in species composition
(98, 99). Grain sensitivity hinders the comparison of rates of compositional change both within
and between time series. However, compositional metrics that are robust to unequal intervals are
available (26, 100), as well as modeling approaches that incorporate uncertainties in time point
estimation (101).
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Spatial grain-size dependence has been long recognized in studies that seek to characterize
extinction thresholds. In these studies, habitat amount is typically measured in multiple buffer
or grain sizes surrounding a focal point, which give rise to variability in the strength of habitat-
occupancy relationships.The grain size at which observed relationships are strongest is considered
the most appropriate for quantifying threshold responses (102). However, observed relationships
can also be sensitive to the grain size of the land cover maps used to measure habitat amount and
influence the estimated habitat threshold value (103).

Species richness can be measured at multiple grains, aggregated into local-scale observations
(often called alpha diversity) to regional-scale observations (often called gamma diversity), and the
choice of grain for analysis can influence the detection of thresholds. For example, Kupsch et al.
(104) found that species richness of birds in Afrotropical agroforestry was relatively constant when
measured as the number of species in a sampling block, until a threshold of 42% forest cover, after
which bird diversity significantly declined. However, when measured at smaller-grain sampling
points, no such threshold was observed.

Study Extent

Extent describes the size of the study area encompassed by all sampling units in space, and the
duration of sampling in time. Sampling the full potential range of a predictor variable is impor-
tant for detecting nonlinear relationships, including thresholds, and failure to do so by individual
studies may explain discrepancies among their findings (105).

Study durations must be sufficient to detect threshold responses that exhibit time lags. For ex-
ample, extinction debts (delayed species extinctions in response to ecosystem perturbations) can
lead to the persistence of populations for extended periods below expected extinction thresholds,
even if a species is expected to go deterministically extinct (106). If studies do not consider ex-
tinction debts, or use methods that do not reliably detect them, extinction debts and threshold
responses will likely go underreported (107). In addition to the range, the frequency and spacing
of samples along the range can influence the likelihood of false detection of thresholds (type I
errors) and estimates of threshold values (108). Bruel &White (109) showed that subsampling ap-
proaches that employ equally spaced sampling across variable ranges can inaccurately estimate the
timing or location of abrupt change when insufficient samples are taken close to the true change
point location.

In addition to a focal driver of interest, as the spatial and/or temporal extent of a study increases,
other abiotic variables (e.g., climate or resource availability) that were constant at smaller extents
become variable at larger extents. As a result, we can no longer assume homogeneous ecological
responses—including threshold responses—to anthropogenic drivers. For example, Simkin et al.
(25) demonstrated variable sensitivities of plant communities to atmospheric nitrogen deposition
across the United States due to moderation by climate and edaphic factors, consequently affecting
critical loads of nitrogen at which species losses begin. Such contingencies highlight the need for
either sampling or analytical designs to recognize contingency and confounding among multiple
drivers acting at multiple scales (110).

Analytical Scale

Analytical decisions can strongly affect the identification and quantification of threshold and non-
linear biodiversity responses. These include whether sampling or observation error is taken into
account (111), how confounding and contingency in ecological effects are dealt with, and the scale
of modeling [e.g., whether additive or logarithmic (112)].

Ecological data are inherently noisy, with implications for threshold detection and magnitude.
Abrupt change in a noisy time series may be often indistinguishable from random sampling
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variation (113). Regression-to-mean effects can lead to smaller following larger extreme values
due to random variation, even if no biological threshold has been crossed. Statistical tools such
as state-space threshold models have been developed that account for observation processes that
generate the sampling variation to better characterize the true underlying biological threshold
response (e.g., 111, 114).

Contingencies of thresholds can be examined in statistical models that include multiple drivers
and their interactions.Outputs can be used to characterize spatial variation in threshold responses,
and target management or restoration efforts to ecosystems at greatest risk of abrupt change (110).
Threshold studies vary in model complexity, ranging from simple univariate responses to a sin-
gle driver, to multiple regression models that explicitly incorporate confounders and interactions
among drivers. A further complexity is that environmental drivers are often confounded; for ex-
ample, forest loss to agriculture typically correlates with climate, topography, and soil fertility.
Failing to account for confounding variation in study or analytical designs could lead to misattri-
bution or the obscuring of threshold responses (115). Causal inference or counterfactual thinking
approaches can also be used to increase the internal validity of studies attributing threshold re-
sponses to hypothesized environmental drivers (116). For example, observational studies can be
made to emulate randomized experiments, through the use of statistical matching methods that
impose similar covariate distributions across the range of a focal driver of interest (see 117), while
structural equation modeling provides the means for evaluating proposed hypotheses against data
(118).

The analytical scale of effect estimation may also dictate whether threshold responses are
detected. For metrics such as species abundance and richness, researchers can model effects on
additive scales or multiplicative (e.g., logarithmic) scales. Often these choices are made based on
statistical reasoning. For example, abundance is often modeled with a log link function because it
ensures that the model predictions are sensible, i.e., remain above zero. However, choices based
on statistical grounds might differ from choices that would be made based on biological grounds
(112). Importantly, a nonlinear relationship on the additive scale can be linearized on the log-
scale; however, studies rarely acknowledge this in interpretation of modeled relationships (e.g.,
119). Arguably, many cases where biodiversity thresholds may exist on an arithmetic scale could
have been overlooked on a log scale. For example, in the synthetic analysis by Hillebrand et al.
(2), comparisons were made using log-response ratios, which might explain why they found little
evidence for threshold responses to global change factors.

DEMONSTRATING SCALE DEPENDENCE OF THRESHOLDS
IN A METACOMMUNITY SIMULATION

In this section, we illustrate two types of scale dependence that influence threshold detection—
organizational scale and spatial extent—using a metacommunity model that incorporates
density-independent abiotic responses, density-dependent competitive interactions, and disper-
sal (120). We simulated a metacommunity composed of 20 functionally different species across
20 habitat patches distributed across an environmentally heterogeneous region. After allowing an
equilibrium to be reached, each patch was subjected to an environmental pressure (e.g., warming
or nutrient release) that increased linearly over 800 time steps, with varying rates in each patch.
The purpose of the simulation is to illustrate three of the concepts described above (organization,
grain, and extent), and thus we do not explore multiple parameter values. Thompson et al. (120)
provide details of the simulation.

To demonstrate the scale dependence of threshold responses, we recorded abundances at the
finest organizational, spatial, and temporal grain possible, corresponding to individual species
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Figure 4

Metacommunity simulations illustrating how organizational scale and spatial extent can influence the detection of thresholds. (a) Total
community abundance (black) and abundances of different species (different colors) summed within patches; (b) local- (alpha-) and
regional- (gamma-) scale species richness plotted along the environmental gradient.

abundances, in each patch, at each time step. This allowed us to aggregate the results at dif-
ferent organizational scales (i.e., single species’ population abundances and total community
abundance) and at different spatial grains (i.e., patch-level alpha diversity and regional gamma di-
versity).Figure 4a shows the abundances of individual species and the total community abundance
within patches across the full extent of the environmental gradient. Species’ population abun-
dances exhibit hump-shaped responses, as specified in the simulation, each centered on species’
environmental optima. Total community abundance also shows an approximately hump-shaped
relationship across the whole gradient.However, choosing either population- or community-level
responses for any section of the environmental gradient (i.e., a restricted extent of the driver)
would influence whether threshold responses are detected. Similarly, when species richness is cal-
culated at the regional grain (i.e., all patches combined), there is no variation in richness across
the gradient (Figure 4b). In contrast, we observe a variety of functional responses of richness at
the grain of the patch in response to the environmental gradient, including linear, hump-shaped
relationships and abrupt changes.

DEMONSTRATING SCALE DEPENDENCE OF THRESHOLDS USING
EMPIRICAL CASE STUDIES

Here we present analyses from published studies that detected threshold responses across an an-
thropogenic gradient. We then adopt a different scale of observation to reanalyze these data and
demonstrate scale influences on threshold detection.

Organizational Level

Morse et al. (121) quantified the response of stream macroinvertebrate communities to a gradient
of catchment urbanization. The study set out to identify a threshold level of urbanization above
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which an abrupt change might be observed in a range of species- and community-level metrics.
Figure 5a (left panel) shows a strong threshold response of Ephemeroptera (mayflies), a classical
indicator group due to their low tolerance of stream pollutants, with abrupt reductions in den-
sities beyond ∼10% urbanization (see also Supplemental Table 1). In contrast, when all taxa
are aggregated, the relationship between macroinvertebrate abundance and urbanization is weak
(Figure 5a, right panel). This is because other taxa increased in abundance with increasing urban-
ization, representing a common situation of “winners and losers” averaging out at the community
level (122).

Study Grain

In a study examining the effects of the introduction of a predatory fish (see 123, 124 for study
details), local species richness measured within individual ponds declined only slightly (Figure 5b,
left panel), despite considerable temporal turnover of fauna in ponds towhich fishwere introduced.
However, a strong threshold-like decline in richness is observed at the regional scale (the sum of
species in five ponds in a spatial block) after the introduction of the fish (Figure 5b, right panel).
This pattern is a result of fish- (i.e., predator-) driven biotic homogenization of pond communities,
resulting in lowered beta diversity across space.Hence, it is important to explore grain dependence
in threshold responses of biodiversity to anthropogenic drivers (125).

Study Extent

We demonstrate the influence of temporal extent on the detection of abrupt change in plant com-
munity composition turnover using a well-sampled paleoecological time series (small grain, short
intervals, and long duration) from Tenerife in the Canary Islands (data from 26). The abrupt
change in community turnover rates following colonization by humans (Figure 5c, left panel) is
no longer detectable when the time series (before human arrival) was reduced in temporal ex-
tent (Figure 5c, right panel). This emphasizes the importance of time series length for potential
baselines (i.e., prior to humans) for detecting impacts (126).

Analytical Scale

Here we illustrate how analytical scale can influence threshold detection, using data from a study
that documented abrupt changes in food-web structure on habitat islands created by a hydro-
electric impoundment in Venezuela. Terborgh et al. (34) found that while larger islands had a
mostly full complement of vertebrate predators, populations of these large mammals could not
persist on the smaller islands, allowing smaller herbivores and seed predators to flourish and lim-
iting the recruitment of tree seedlings. When examined on the additive scale, abrupt changes
in absolute densities of leaf-cutter ants and seedlings are apparent when islands are less than
∼1 hectare (Figure 5d, left panel), whereas the abruptness is no longer evident and the trend is lin-
ear when analyzed on the log scale (Figure 5d, right panel).While noting that log-transformation
can obscure a nonlinear (threshold-like) response may seem somewhat trivial, it highlights why
threshold-type responses may be rare in some synthetic analyses where nonlinear transformations
(e.g., log response ratios) are applied (e.g., 2).

UTILITY OF THRESHOLD CONCEPTS IN POLICY

Broadly, threshold concepts are used to minimize adverse changes to ecosystems, by specifying
acceptable levels of human activities (conservation thresholds) (18), or to reverse change, by guid-
ing the restoration of species, populations, and ecosystem processes to some desired past state
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Figure 5 (Figure appears on preceding page)

Empirical examples of scale dependence in detecting ecological thresholds. For each example, we fitted a
linear model, a generalized additive model, and a segmented regression and plotted the best-supported
model. Solid lines show the fitted relationships, and shading shows the 95% confidence intervals.
(a) Organizational level: abundance of mayflies and total abundance of stream macroinvertebrates in
response to different degrees of catchment urbanization (percent total impervious surface area; referred to
here as urbanization %) (data from 116). (b) Study grain: changes in local and regional species richness of
macroinvertebrates and amphibians in experimental ponds after introduction of a predatory fish (data from
the same experiment as 124). (c) Study extent: detection of thresholds in the rate of palynological
compositional turnover for Tenerife from a complete and a truncated sedimentary sequence (data from 26).
The x-axis represents calibrated years before 1950. The y-axis represents the ordination axis 1 score of a
detrended correspondence analysis (DCA1). The vertical red line indicates the detected threshold.
(d) Analytical scale: density of leaf-cutter ants and tree seedling changes in islands of different size that were
formed following the creation of a hydroelectric impoundment in Venezuela (data from 34). The data were
analyzed and visualized on numerical scale and on a log scale. See Supplemental Table 1 for results of
model comparison.

(restoration thresholds) (36). Here we review issues that arise when threshold concepts are uncrit-
ically applied in these two approaches and outline how scale dependencies could be considered in
the future.

Examples of conservation thresholds include fishery harvest quota, extinction thresholds, and
critical loads of pollutant deposition. Their use is controversial given confusion about (a) whether
values relate to abrupt or gradual change, (b) the risks and consequences of transgressing the
threshold, (c) potential restoration costs following threshold transgression, (d) the organizational,
spatial, and temporal scales at which thresholds are realized, and (e) interactions among environ-
mental drivers (18). There is a clear need to understand the mechanistic basis underlying various
threshold types observed (Figure 1) in order for appropriate policy responses to be developed
(127).

Applications of habitat extinction and biodiversity thresholds estimated in localized case stud-
ies must consider whether land-use patterns in a region are confounded with abiotic gradients
and other habitat attributes, including configuration and quality (128). Patterns of habitat loss
are not random and yield fragments that are not of uniform quality. Failure to account for cor-
relates of vegetation extent risks the prescription of erroneous area-based conservation targets in
human-modified environments (35, 115). In addition to confounding, contingencies or complex
interactions among abiotic and biotic variables may lead to modifications of extinction thresh-
olds. Simmonds et al. (129) found that these contingencies are unpredictable and suggested that
generalizing threshold existence and values, and incorporating them into landscape management,
requires that (a) these interactions are identified and understood in a range of landscapes and
(b) the confounding effect of such interactions is controlled for in analyses of threshold responses
to natural land cover.

The prescription of thresholds will be hampered by climate change, which can modify multiple
abiotic and biotic components of ecosystems and interact with other anthropogenic drivers (12).
Threshold uncertainties and contingencies with climate change must be carefully communicated
using multiple scenarios. For example,Winter et al. (130) used age-structured population models
to show how fishing-induced Allee effects change with climate scenarios. Once contingencies are
quantified, interactive web tools and maps that dynamically update in response to user-specified
contextual factors or scenarios can be used to apply more localized, context-dependent threshold
values (131).

Threshold concepts are used in ecological restoration to understand why recovery is failing
and identify appropriate restoration interventions (132). For example, restoration can be slow
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due to stabilizing feedback processes or ongoing disturbances (133). Restoration interventions
can involve the simple removal of anthropogenic pressures, or facilitate the recovery of intrinsic
processes, such as interactions between organisms or dispersal across human-modified land-
scapes. However, restoring ecosystems to predisturbance levels may be exceedingly difficult or
unattainable even with intensive restoration interventions (134) and, as a result, an increasingly
widespread, yet debated, view is that future novel ecosystems can instead be targeted in a changed
world (135, 136).

Implementing Science-Based Policy Using Ecological Thresholds

It is clear that the context dependence of ecological thresholds undermines the use of threshold
concepts, and their specific values, across policy contexts. Rather than providing policymakers
with “magic bullets” (137) (e.g., how much habitat is enough?), scientists can inform policies by
identifying the mechanisms through which thresholds may or may not arise (137). Kelly et al. (10)
and Foley et al. (11) reviewed the implementation of threshold concepts in a range of policy con-
texts and identified three features that determine their usefulness, which we expand on here. First,
timely and consistent monitoring of appropriate ecosystem response variables can allow better
quantification of possible early-warning signals, such as rising variance or autocorrelation in key
community parameters. This requires that monitoring is carried out using appropriate response
metrics (organizational levels), spatiotemporal grains and extents, and analytical scales. If these
are not known a priori, then multiple scales should be adopted in early monitoring stages. Second,
adaptive policies that explicitly consider the possibility of a threshold transgression and respond to
early warnings aremore effective than reactivemanagement in systemswhere restorationwould be
extremely difficult. Finally, knowledge of the mechanisms that underlie ecological thresholds can
inform policies by identifying the appropriate scales at which specific drivers should be managed
and measured in future monitoring efforts. For example, in relatively small or discrete ecosys-
tems, such as shallow lakes and coastal lagoons, drivers of change are relatively tractable because
local inputs can be regulated. However, processes and drivers operating at larger scales, such as
regional nutrient inputs, can overwhelm the effects of local intervention and require multilateral
policy reforms.

TOWARD A PREDICTIVE UNDERSTANDING OF ECOLOGICAL
THRESHOLDS THROUGH SYNTHESIS

Synthesis allows us to extend the scope of inference of individual studies, for example by increas-
ing the length of an anthropogenic gradient sampled in any one study. Moreover, by virtue of
its comparative lens, synthesis could help reconcile idiosyncrasies in threshold research, for ex-
ample, by assessing the relative prevalence of threshold versus gradual ecological responses to
global change (2), evaluating the correspondence between abrupt changes to island flora and
human arrival (26), or contrasting tropical versus temperate habitat extinction threshold values
(138).

Hillebrand et al. (2) combined data from 36 meta-analyses—which together included more
than 4,600 studies conducted in terrestrial, aquatic, and marine systems—to assess the preva-
lence of threshold responses to a range of environmental pressures. Despite evidence for strong
responses of ecosystem variables to environmental pressure across the compiled datasets (e.g.,
biomass production in response to fertilization), they concluded that threshold transgressions were
rare (2).Rather, they found that ecological responses were gradual,with significant variation across
studies, and concluded that thresholds are unlikely to be detected because of noise and complex
interactions of multiple pressures and responses (see, however, 139 for objections to the overall
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conclusions). However, as discussed above, the primary analyses used by Hillebrand et al. were
based on log-response ratios, which are less likely to detect threshold-like changes across studies
with varying baselines. In future syntheses, scale could provide a unifying framework with which
to disentangle these complexities and yield more targeted analyses and nuanced generalizations
about when and where thresholds are more or less likely to emerge.

Future lines of inquiry that could improve our predictive understanding of thresholds include
whether drivers are shared or distinct across different ecosystems, organizational levels, or biomes
(19). The synthesis of long-term, distributed field studies that sample broad environmental gra-
dients (especially extremes) could be used to characterize their interactions with climatic and
biogeographic gradients. Currently, however, quantitative synthesis is challenged by the diver-
sity of scales employed by primary studies, in addition to variation in baseline states (19). Caution
must be exercised to avoid misattributing contingencies in threshold values to systematic dif-
ferences in grain and extent across groups of studies. The archival of raw, site-level data could
permit the application of uniform analytical approaches, including causal inference, and model-
ing of contingencies (140). The scale of effect size estimation must also be carefully considered
(e.g., avoiding effect sizes that linearize nonlinear relationships, such as log response ratios, when
modeling driver-response relationships). In sum, synthesis of ecological thresholds will require
the development of appropriate data and analyses that explicitly account for the different domains
of scale we have reviewed here. We must take care not to overgeneralize across domains of scale
that we know are critically important in determining processes and patterns in ecology.

SUMMARY POINTS

1. Thresholds in ecological responses to anthropogenic drivers are an attractive concept
for both scientific research and policy decisions, but there are controversies surrounding
their existence, detection, mechanisms, and generalizability.

2. We broadly define thresholds as a point of relatively abrupt change in a nonlinear
relationship between a driver and its ecological response.

3. Many analytical approaches are available to detect thresholds, including segmented re-
gression, generalized additive models, clustering or partitioning analysis, and complex
methods that test for hysteresis.

4. Thresholds are observed in many systems for all the big five anthropogenic stressors
(harvesting, land-/sea-use change, pollution, invasive species, and climate change), but
not always.

5. Threshold concepts have been embraced by policies that aim to mitigate against these
drivers, yet their effectiveness as a management tool has been questioned.

6. We show how scale can serve as a unifying framework to reconcile context dependencies
in threshold research.Threshold detection generally depends on the degree of alignment
between the intrinsic scales of the organisms under study and the scales of observation
imposed by the researcher, and these are framed by organizational levels, grains, extents,
and analytical decisions within the analysis.

7. The diversity of observation scales used in primary studies makes synthesizing threshold
research challenging, but such synthesis could improve our predictive understanding of
thresholds and their utility in environmental policies.
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FUTURE ISSUES

1. Can causal inference approaches to the design and analysis (e.g., statistical matching,
structural equation modeling) of observational studies strengthen the attribution of
threshold responses to specific drivers?

2. Long-term, distributed field studies that sample large environmental gradients (particu-
larly extremes) could be used to better sample environmental gradients and understand
their interactions with climatic and biogeographic gradients.

3. Better linkage between theoretical models, experimental studies, and empirical studies is
needed to understand what biological features promote or impede a threshold response
in real-world systems.

4. Novel synthesis approaches are synthesis needed to carefully account for the differences
in observation scales of separate studies and datasets to better characterize the mean and
variation in thresholds (in terms of existence, magnitude, and location) among taxa and
environments.

5. Interdisciplinary approaches are needed to ensure the appropriate transfer of the findings
from threshold research, as well as to develop ways to communicate their contingency
and uncertainty.
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